Introduction to Modern Data Engineering¶
The Evolution of Data Transformation¶
Data engineering has undergone a dramatic transformation in the past decade. Understanding this evolution helps explain why dbt has become so essential.
The Traditional ETL Era (2000-2015)¶
How It Worked¶
┌─────────────┐ ┌──────────┐ ┌───────────────┐
│ Source DB │ ───> │ ETL Tool │ ───> │ Data Warehouse│
└─────────────┘ └──────────┘ └───────────────┘
│
Transform Data
(in the tool)
Tools: Informatica, Talend, SSIS, Pentaho
Process: 1. Extract data from source systems 2. Transform data in an ETL tool 3. Load transformed data into warehouse
The Problems¶
❌ Expensive: Enterprise ETL tools cost hundreds of thousands ❌ Complex: Point-and-click interfaces for complex logic ❌ Proprietary: Logic locked in vendor tools ❌ Slow: Data processed on ETL servers, not in warehouse ❌ No Version Control: Hard to track changes ❌ No Testing: Manual QA processes ❌ Black Box: Hard to debug and maintain
The Big Data Revolution (2010-2018)¶
How It Changed¶
┌─────────────┐ ┌──────────────┐ ┌──────────┐
│ Source DB │ ───> │ Hadoop/Spark │ ───> │ Data Lake│
└─────────────┘ └──────────────┘ └──────────┘
│
Complex Code (Java/Scala)
Tools: Hadoop, Spark, Hive
Improvements: ✅ Handle massive data volumes ✅ Process data in parallel ✅ Open source
New Problems: ❌ High Complexity: Requires deep engineering skills ❌ Java/Scala Required: Not accessible to analysts ❌ Infrastructure Heavy: Managing clusters ❌ Still No Testing: Data quality issues persist
The Cloud Warehouse Era (2015-2020)¶
The Game Changer¶
Cloud data warehouses like Snowflake, BigQuery, and Redshift changed everything:
✅ Scalable: Handle petabytes of data ✅ Fast: Columnar storage and MPP architecture ✅ Affordable: Pay for what you use ✅ Managed: No infrastructure to maintain ✅ SQL-Based: Analysts can write transformations
This enabled the ELT pattern:
┌─────────────┐ ┌───────────────┐
│ Source DB │ ───> │ Data Warehouse│
└─────────────┘ └───────────────┘
│
Transform Here!
(with SQL)
Extract → Load → Transform
Instead of transforming before loading, load raw data first, then transform it inside the warehouse using its computational power.
The Modern Data Stack (2020-Present)¶
The Complete Picture¶
graph TB
A[SaaS Apps] -->|Fivetran/Airbyte| B[Data Warehouse]
C[Databases] -->|Fivetran/Airbyte| B
D[APIs] -->|Custom Scripts| B
B -->|dbt| E[Transformed Data]
E --> F[BI Tools]
E --> G[ML Models]
E --> H[Reverse ETL]
I[Version Control] -.-> J[dbt]
J -.-> K[CI/CD]
K -.-> E
style J fill:#ff6b35,stroke:#333,stroke-width:3px
Components:
- Extract & Load: Fivetran, Airbyte, Stitch (automated data pipelines)
- Data Warehouse: Snowflake, BigQuery, Redshift, Databricks
- Transform: dbt (SQL-based transformations)
- Orchestrate: Airflow, Dagster, Prefect
- Visualize: Looker, Tableau, Metabase
- Observe: Monte Carlo, Datafold, Lightup
Why This Stack Wins¶
✅ Best-in-class tools for each function ✅ Cloud-native and scalable ✅ SQL-first for accessibility ✅ Modular and composable ✅ Open standards and APIs
Enter dbt: The Missing Piece¶
The Problem dbt Solves¶
Before dbt, even with cloud warehouses, data teams faced:
Organizational Challenges: - SQL scripts scattered everywhere - No clear ownership - Tribal knowledge - Difficult onboarding
Technical Challenges: - No dependency management - Manual execution order - No automated testing - Undocumented data - No version control
Operational Challenges: - Broken pipelines - Data quality issues - Slow development cycles - Hard to debug
The dbt Solution¶
dbt brings software engineering practices to analytics:
# Traditional approach (pseudo-code)
run_script("01_staging.sql")
run_script("02_intermediate.sql")
run_script("03_marts.sql")
# Hope nothing breaks!
# dbt approach
dbt run # Automatically determines execution order
dbt test # Validates data quality
dbt docs generate # Creates documentation
How dbt Works¶
The Workflow¶
┌──────────────────────────────────────────────────┐
│ Development (Local or dbt Cloud) │
│ │
│ 1. Write SQL models │
│ 2. Define tests in YAML │
│ 3. Add documentation │
│ 4. Run locally: dbt run / dbt test │
└──────────────────────────────────────────────────┘
│
▼
┌──────────────────────────────────────────────────┐
│ Version Control (Git) │
│ │
│ 1. Commit changes │
│ 2. Create pull request │
│ 3. Review with teammates │
└──────────────────────────────────────────────────┘
│
▼
┌──────────────────────────────────────────────────┐
│ CI/CD (GitHub Actions, GitLab, etc.) │
│ │
│ 1. Run dbt tests │
│ 2. Check for errors │
│ 3. Merge if passing │
└──────────────────────────────────────────────────┘
│
▼
┌──────────────────────────────────────────────────┐
│ Production (dbt Cloud or Airflow) │
│ │
│ 1. Schedule: dbt run │
│ 2. Test: dbt test │
│ 3. Alert if failures │
└──────────────────────────────────────────────────┘
What Makes dbt Different¶
Not an ETL Tool: - Doesn't extract data - Doesn't load data - Only transforms data already in warehouse
It's a Development Framework: - Compiler (Jinja + SQL → SQL) - Orchestrator (manages dependencies) - Test runner (validates data) - Documentation generator
Real-World Examples¶
Before dbt¶
Acme Corp's Data Team: - 50+ SQL scripts in various folders - Run manually in specific order - No tests - discover issues in dashboards - New analyst takes 3 months to onboard - Pipeline breaks 2-3 times per week
After dbt¶
Acme Corp's Data Team:
- 200+ dbt models in organized structure
- dbt run executes everything correctly
- 500+ automated tests catch issues early
- New analyst productive in 2 weeks
- Pipeline runs reliably every night
The Analytics Engineering Role¶
dbt has helped establish Analytics Engineering as a distinct role:
Data Analyst Analytics Engineer Data Engineer
│ │ │
├─ SQL ├─ Advanced SQL ├─ Python/Scala
├─ BI Tools ├─ dbt ├─ Airflow/Spark
├─ Excel ├─ Git ├─ Infrastructure
├─ Stakeholder Mgmt ├─ Data Modeling ├─ Pipelines
└─ Ad-hoc Analysis ├─ Testing └─ Architecture
├─ Documentation
└─ CI/CD
Analytics Engineers: - Own the transformation layer - Apply software engineering practices - Partner with analysts and engineers - Ensure data quality and reliability
Key Concepts Preview¶
Before diving in, here are core concepts we'll cover:
1. Models¶
SQL files that define transformations:
2. Sources¶
Raw data from your warehouse:
3. Tests¶
Data quality checks:
4. Documentation¶
Metadata about your data:
5. Materializations¶
How dbt builds models (table, view, incremental, ephemeral):
The Transformation Landscape¶
dbt vs Alternatives¶
| Feature | dbt | Dataform | SQLMesh | Legacy ETL |
|---|---|---|---|---|
| Language | SQL + Jinja | SQL | SQL + Python | Proprietary |
| Open Source | ✅ | ❌ (Google owned) | ✅ | ❌ |
| Testing | Built-in | Built-in | Built-in | Manual |
| Version Control | Git | Git | Git | Sometimes |
| Cloud Offering | dbt Cloud | Part of BigQuery | Coming | Vendor-specific |
| Community | Huge | Small | Growing | Varies |
| Learning Curve | Moderate | Moderate | Moderate | Steep |
Why dbt Wins: - Largest community and ecosystem - Works with all major warehouses - Rich package ecosystem - Strong open source + enterprise options - Industry standard for analytics
What's Next?¶
Now that you understand the landscape, let's dive into dbt:
- What is dbt? - Deep dive into dbt's features
- Installation - Get dbt running locally
- First Project - Build your first data pipeline
- Core Concepts - Master dbt fundamentals